Discrete Darboux transformation for discrete polynomials of hypergeometric type
نویسندگان
چکیده
منابع مشابه
Modified Clebsch-gordan-type Expansions for Products of Discrete Hypergeometric Polynomials. 1
Starting from the second-order diierence hypergeometric equation satissed by the set of discrete orthogonal polynomials fp n g, we nd the analytical expressions of the expansion coeecients of any polynomial r m (x) and of the product r m (x)q j (x) in series of the set fp n g. These coeecients are given in terms of the polynomial coeecients of the second-order diierence equations satissed by th...
متن کاملDiscrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials
Consequences of the Darboux transformations for the finite-difference Schrödinger equations and three-term recurrence relations for orthogonal polynomials are considered. An equivalence of the chain of these transformations, or discrete dressing chain, to the discrete-time Toda lattice is established. A more fundamental discrete-time Volterra lattice consisting of one simple differencedifferenc...
متن کاملDarboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation
The paper presents two results. First it is shown how the discrete potential modified KdV equation and its Lax pairs in matrix form arise from the Hirota–Miwa equation by a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations are derived for the discrete potential modified KdV equation and it is shown how these may be used to construct exact solutions.
متن کاملDiscrete Polynomials and Discrete Holomorphic Approximation
We use discrete holomorphic polynomials to prove that, given a refining sequence of critical maps of a Riemann surface, any holomorphic function can be approximated by a converging sequence of discrete holomorphic functions.
متن کاملDiscrete Bispectral Darboux Transformations from Jacobi Operators
We construct families of bispectral difference operators of the form a(n)T + b(n) + c(n)T where T is the shift operator. They are obtained as discrete Darboux transformations from appropriate extensions of Jacobi operators. We conjecture that along with operators previously constructed by Grünbaum, Haine, Horozov, and Iliev they exhaust all bispectral regular (i.e. a(n) 6= 0, c(n) 6= 0,∀n ∈ Z) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1998
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/31/9/009